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A. Introduction 

The activation ofT cells requires two sets 
of signals from cell surface receptors to 
the nucleus. The first signal is initiated 
when appropriately processed and pre­
sented foreign antigen interacts with the 
90-kD polymorphic heterodimeric T-cell 
surface receptor for the specific antigen. 
Following the interaction of antigen pre­
sented in the context of products of the 
major histocompatibility locus and inter­
leukin-l or interleukin-6 with the antigen 
receptor, T cells synthesize interleukin-2 
(IL-2) [1, 2]. To exert its biological effect, 
IL-2 must interact with specific high­
affinity membrane receptors. Resting T 
cells do not express high-affinity IL-2 re­
ceptors, but receptors are rapidly ex­
pressed on T cells after activation with an 
antigen or mitogen [3, 4]. 

Progress in the analysis of the struc­
ture, function, and expression of the hu­
man IL-2 receptor was greatly facilitated 
by the production by Uchiyama et al. [5] 
of a monoclonal antibody (termed anti­
Tac) that was shown to recognize the hu­
man IL-2 receptor [6]. 

We have utilized the anti-Tac mono­
clonal antibody and radio labeled IL-2 in 
cross-linking studies to: (a) define multi­
ple IL-2-binding peptides that participate 
in the human receptor for IL-2; (b) 
molecularly clone cDNAs for the 55-kD 
peptide of the human IL-2 receptor; (c) 
determine the immunological events that 
require the interaction of IL-2 with its 
receptor; (d) analyze disorders of IL-2 
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receptor expression in leukemia, especial­
ly those forms of leukemia associated 
with the retrovirus HTLV-I; and (e) de­
velop protocols for the therapy of pa­
tients with IL-2 receptor-expressing adult 
T -cell leukemia and T -cell-mediated au­
toimmune disorders, and for individuals 
receiving organ allografts. 

B. Structure of the Multisubunit 
IL~2 Receptor 

The high-affinity IL-2 receptor consists 
of multiple distinct IL-2-binding pep­
tides. The IL-2-binding receptor peptide 
identified by the anti-Tac monoclonal on 
PHA-activated normal lymphocytes is a 
55-kD glycoprotein [6]. We and others 
have defined a second non-Tac IL-2-
binding peptide with an Mr of 68-76 kD 
(p75) [7, 8]. Using cross-linking method­
ology, we demonstrated the p75 peptide 
on MLA 144, a gibbon T-cell line that 
does not express the Tac antigen but 
manifests a few thousand relatively low­
affinity (Kd = 14 nM) IL-2-binding sites 
per cell. The p75 peptide was also identi­
fied in addition to the Tac peptide (p55) 
in cell populations that express both 
high- and low-affinity receptors. We pro­
posed a multichain model for the high­
affinity IL-2 receptor in which an inde­
pendently existing Tac or p75 peptide 
would represent low- and intermediate­
affinity receptors, respectively, whereas 
high-affinity receptors would be ex­
pressed when both pep tides are expressed 
and associated in a receptor complex [7]. 
To test this working hypothesis, we fused 
cell membranes from a low-affinity IL-2-
binding cell line bearing the Tac peptide 
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alone (MT -1) with membranes from a 
cell line bearing the p75 peptide alone 
(MLA 144) and generated hybrid mem­
branes bearing high-affinity receptors [9]. 
These studies support the multichain 
model for the high-affinity IL-2 receptor 
[7]. 

There is evidence suggesting a more 
complex subunit structure that involves 
peptides in addition to the p55 and the 
p75 IL-2-binding peptides. Two mono­
clonal antibodies, OKT27 and OKT27b, 
were produced that react with distinct 
epitopes of a 95-kD peptide. The 
OKT27b antibody inconsistently copre­
cipitated the 55-kD Tac peptide as well as 
the 95-kD peptide [10]. A flow cytometric 
energy transfer technique was used to 
demonstrate a close nonrandom proxim­
ity between the p55 Tac and 95-kD T27 
peptides [10]. In addition, fluorescence 
photobleaching recovery measurements 
suggest that the Tac and T27 peptides 
physically interact in situ in HUT 102 
membranes [11]. In independent chemi­
cal cross-linking studies with radio la­
beled IL-2, Herrmann and Diamantstein 
[12] and Saragovi and Malek [13] pre­
sented evidence for an independent 100-
115-kD IL-2-binding peptide in mice as­
sociated with the p55- and p75-kD chains 
of the high-affinity form of the IL-2 re­
ceptor on mouse T-cell blasts, CTLL-16 
cells, and sublines of EL-4 transfected 
with the gene encoding the p55 peptide. 
This 100- to 115-kD peptide was not pre­
cipitated by an anti-p55-specific anti­
body. Taken together, these studies sug­
gest that three IL-2-binding peptides 
(p55, p75, and p95-115) are associated 
in the multi subunit high-affinity IL-2 re­
ceptor. 

The three-dimensional structure of the 
133 amino acid lymphokine IL-2 has 
been defined [14]. These studies, taken in 
conjunction with studies using site­
specific mutagenesis of IL-2 and mono­
clonal antibodies directed toward de­
fined regions of IL-2 in neutralization 
and binding assays [15, 16], have aided in 
the analysis of the structure-function re­
lationships of human IL-2. Furthermore, 
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they have led to the identification of the 
amino acid residues required for binding 
to the different IL-2 receptor peptides 
and for biological activity. IL-2 has an 
(X-helical tertiary structure involving six (X 
helices that suggests that certain portions 
of the molecule form a structural scaffold 
that underlies the receptor-binding facet 
of the molecule [14]. A short helical seg­
ment (helix A, amino acid residues 11-
19) is required for biological activity and 
appears to be involved in binding to the 
p75 IL-2-binding peptide. The second he­
lix on the structural scaffold helix is an 
extended loop involving residues 33 - 56 
that form a helix interrupted in the mid­
dle by Pr047

. These two segments are re­
ferred to as Band B'. This segment ap­
pears to be required for binding to the 
p55 Tac peptide. An additional (X helix E 
(amino acids 107 -113) is also positioned 
on the binding plane and could theoreti­
cally bind the proposed 95-115-kD IL-
2-binding peptide. However, no exten­
sive studies of this region of IL-2 have 
been made. Finally, the carboxy terminal 
residues 121-133 and two of the three 
cysteine residues (58 and 105) are re­
quired for full biological activity and 
binding [15]. 

c. Lymphocyte Functions That Are 
Regulated by the Interaction of IL-2 
with Its Receptor 

The anti-Tac monoclonal antibody has 
been used to define those lymphocyte 
functions that require an interaction of 
IL-2 with the 55-kD inducible receptor 
on activated T- and B-Iymphocytes. The 
addition ofanti-Tac to cultures of human 
peripheral blood mononuclear cells in­
hibited the proliferation of T -lympho­
cytes stimulated by soluble antigens and 
by cell surface antigens (autologous and 
allogeneic mixed lymphocyte reactions) 
[17]. Anti-Tac was also shown to inhibit 
the generation of both cytotoxic and sup­
pressor T-Iymphocytes in allogeneic cell 
cultures, but did not inhibit their action 
once generated. In contrast to the action 



on T cells, anti-Tac did not inhibit the 
IL-2-induced activation oflarge granular 
lymphocytes into effective MK and LAK 
cells. As noted above, large granular 
lymphocytes express the p75 but not the 
55-kD Tac peptide. Furthermore, upreg­
ulation of the expression of Tac mRNA 
and Tac peptide by IL-2 has been demon­
strated for a number of cell types (e.g., 
large granular lymphocytes, B cells, and 
resting T cells), including some that ini­
tially express few if any Tac molecules 
[18, 19]. The addition of IL-2 to such 
Tac-negative cells, including large granu­
lar lymphocytic leukemia cells, augment­
ed transcription of the Tac gene and in­
duced the expression of the Tac peptide 
[20]. Neither the IL-2-induced activation 
of large granular lymphocytes nor the 
upregulation of Tac gene expression was 
inhibited by the addition of anti-Tac. 
These results strongly suggest that the 
p75 peptide is responsible for IL-2-in­
duced activation of large granular 
lymphocytes and that the p75 peptide 
can mediate an IL-2 signal without coex­
pression of the Tac peptide. Thus, the 
p75 peptide may play an important role 
in the IL-2-mediated immune response 
not only by participating with the Tac 
peptide in the formation of the high­
affinity receptor complex on T cells but 
also by contributing to the initial trigger­
ing of large granular lymphocyte activa­
tion so that these cells become efficient 
NK and LAK cells. 

D. Disorders of IL-2 Expression in Adult 
T-Cell Leukemia 

A distinct form of mature T-cell leu­
kemia was defined by Takasuki and 
coworkers [21] and termed adult T-cell 
leukemia (ATL). T-cell leukemias, such 
as ATL, that are caused by HTLV-I, as 
well as all T-cell lines infected with 
HTLV-I, express large numbers of IL-2 
Tac receptor peptides. An analysis of this 
virus and its protein products suggests a 
potential mechanism for this association 
between HTLV-I and IL-2 receptor ex-

pression. The complete sequence of 
HTLV -I has been determined by Seiki 
and colleagues [22]. In addition to the 
presence of typical long terminal repeats 
(LTRs), gag, pol, and env genes, retro­
viral gene sequences common to other 
groups of retroviruses, HTLV -I and -II 
were shown to contain an additional ge­
nomic region between env and the 3' LTR 
referred to as pX that encodes at least 
three peptides of 21, 27, and 40-42 kD. 
Sodroski and colleagues [23] demonstrat­
ed that one of these, a 42-kD protein they 
termed the tat protein, is essential for 
viral replication. The mRNA for this 
protein is produced by a double splicing 
event. The tat protein acts on a 21-bp 
enhancer-like repeat within the LTR of 
HTLV -I, stimulating transcription [24, 
25]. This tat protein also appears to play 
a central role in directly or indirectly in­
creasing the transcription of host genes 
such as the IL-2 and especially the IL-2 
Tac receptor genes involved in T-cell acti­
vation and HTLV-I-mediated T-cell 
leukemogenesis [26 - 28]. 

E. IL-2 Receptor as a Target for Therapy 
in Patients with ATL 

The observation that ATL cells constitu­
tively express large numbers of IL-2 re­
ceptors identified by the anti-Tac mono­
clonal antibody, whereas normal resting 
cells and their precursors do not, provid­
ed the scientific basis for therapeutic tri­
als using agents to eliminate the IL-2 
receptor-expressing cells. Such agents 
could theoretically eliminate Tac-ex­
pressing leukemic cells or activated T 
cells involved in other disease states while 
retaining the Tac-negative mature nor­
mal T cells and their precursors that ex­
press the full repertoire for T-cell im­
mune responses. The agents that have 
been used or are being developed include: 
(a) unmodified anti-Tac monoclonal; (b) 
toxin (e.g., a chain of ricin toxin, Pseu­
domonas toxin, truncated Pseudomonas 
toxin) conjugates of anti-Tac; (c) alpha­
and beta-emitting isotopes (e.g., bis-
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muth-212 and yttrium-90) chelated to 
anti-Tac; (d) "humanized" recombinant 
antibodies that combine the variable or 
hypervariable domains of mouse anti­
Tac associated with the constant do­
mains of human immunoglobulin kappa 
light and IgG-1 or IgG-3 heavy chains; 
and (e) interleukin-2 toxin fusion 
proteins (e.g., IL-2-truncated Pseu­
domonas toxin). 

We have performed a clinical trial to 
evaluate the efficacy of intravenously 
administered anti-Tac monoclonal anti­
body in the treatment of patients with 
ATL [29]. None of the ten patients treat­
ed suffered any untoward reactions, and 
only one, a patient with anti-Tac-induced 
clinical remission, produced antibodies 
to the anti-Tac monoclonal. Three of the 
patients had a mixed, partial, or com­
plete remission following anti-Tac thera­
py. These patients may have represented 
an early autocrine stage of ATL, wherein 
the leukemic T cells still require IL-2 for 
their proliferation. Alternatively, the 
clinical responses may have been mediat­
ed by host cytotoxic cells reacting with 
the tumor cells bearing the anti-Tac 
mouse immunoglobulin on their surface. 

These therapeutic studies have been 
extended in vitro by examining the effica­
cy of toxins coupled to anti-Tac selective­
ly to inhibit protein synthesis and viabili­
ty of Tac-positive ATL lines. The addi­
tion of anti-Tac antibody coupled to 
Pseudomonas exotoxin inhibited protein 
synthesis by Tac-expressing HUT 102-B2 
cells, but not that by the acute T -cell line 
MOLT-4, which does not express the Tac 
antigen [30]. Anti-Tac conjugated with 
unmodified Pseudomonas toxin (PE) was 
hepatotoxic. Subsequent functional anal­
ysis of deletion mutants of the PE struc­
tural gene has shown that the 26-kD do­
main I of the whole 66-kD PE is rctspon­
sible for cell recognition; domain II for 
translocation of the toxin across mem­
branes; and domain III for ADP-ribosy­
lation of elongation factor 2, the step ac­
tually responsible for cell death [31]. A 
PE molecule from which domain I has 
been deleted (PE40) has full ADP-ribosy-
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lating activity but extremely low cell­
killing activity because of the loss of the 
cell recognition domain. Anti-Tac PE40 
conjugates retained the capacity of un­
modified PE to kill Tac-expressing T cells 
but were two logs less toxic to Tac-non­
expressing cells. 

PE40 was also used in IL-2 PE40 
constructs to provide an alternative 
(lymphokine-mediated) method of deliv­
ering PE40 to the surface of IL-2 recep­
tor, Tac-positive, cells [32]. These con­
structs were effective in inhibiting protein 
syntheses and in killing IL-2 receptor-ex­
pressing cells but not the cells that did 
not display the cell surface IL-2 receptor. 

The action of toxin conjugates ofmon­
oclonal antibodies depends on their abil­
ity to be internalized by the cell and 
released into the cytoplasm. Anti-Tac 
bound to IL-2 receptors on leukemic cells 
is internalized slowly into coated pits and 
then endosomic vesicles. Furthermore, 
the toxin conjugate does not pass easily 
from the endosome to the cytosol, as re­
quired for its action on elongation factor 
2. To circumvent these limitations, an al­
ternative cytotoxic reagent was devel­
oped that could be conjugated to anti­
Tac and that was effective when bound to 
the surface of leukemic cells. It was 
shown that bismuth-212 e12Bi), an al­
pha-emitting radionuclide conjugated to 
anti-Tac by use of a bifunctional chelate, 
was well suited for this role [33]. Activity 
levels of 0.5 ~Ci or the equivalent of 12 
rad/ml of alpha radiation targeted by 
212Bi-labeled anti-Tac eliminated greater 
than 98% of the proliferative capacity of 
the HUT 102-B2 cells, with only a mod­
est effect on IL-2 receptor-negative lines. 
This specific cytotoxicity was blocked by 
excess unlabeled anti-Tac, but not by hu­
man IgG. Therefore, 212Bi-Iabeled anti­
Tac is a potentially effective and specific 
immunocytotoxic agent for the elimina­
tion of IL-2 receptor-positive cells. 

In addition to its use in the therapy of 
patients with ATL, IL-2 receptor-direct­
ed therapy is being attempted in other 
clinical states. Specifically, therapeutic 
studies have been initiated using mono-



clonal antibodies directed toward the IL-
2 receptors expressed on auto reactive T 
cells of certain patients with autoimmune 
disorders, on host T cells responding to 
foreign histocompatibility antigens on 
organ allografts, and on leukemic T and 
B cells. 
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